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On the Design and Optimization of the
Shielded-Pair Transmission Line

GLENN S. SMITH, MEMBER, IEEE, AND JOHN D. NORDGARD, MEMBER, IEEE

Abstract—The electrical parameters of the shielded-pair transmission
line are computed using a truncated harmonic expansion for the surface
charge density on the conductors. The formulation includes the proximity
effect due to the close spacing of the conductors. Parametric curves are
given for the capacitance, resistance, and attenuation per-unit length, and
the characteristic impedance of the line. Both the balanced and the
longitudinal modes of propagation are considered and the dimensions for a
line with minimum attenuation are determined for each mode. Capaci-
tances measured on model transmission lines are shown to be in good
agreement with the theory.

I. INTRODUCTION

EVERAL DIFFERENT methods for computing the

electrical characteristics of multiconductor transmis-
sion systems have been presented in the literature. These
structures have been analyzed using physical approxima-
tions, such as the replacement of the conductors by image
line charges [1]-[3], conformal mapping [4], variational
principles [5], and matrix methods that involve truncating
an infinite series of harmonic terms that represent the
surface charge or current on the conductors (often re-
ferred to generically as the method of moments) [6]-[7].
When used with a modern computer, the last approach
offers the advantage that any reasonable degree of ac-
curacy for the parameters, such as the capacitances per-
unit length, can be obtained by retaining a sufficient
number of terms in the series. The papers that cover this
material generally have presented numerical results for a
few specific cases, but no systematic parametric studies
that can be used for design purposes.

The parameters that characterize the shielded-pair
transmission line are of particular interest since this struc-
ture is often used in practice, e.g., as a shielded balanced
transmission line in telephonic communication, and in
directional couplers, transformers and filters at radio
frequencies (UHF). Several approximate formulas were
developed for the capacitances per-unit length of this line
during the early period of its use [18]-[20]. Craggs and
Tranter appear to be the first to have developed the
matrix method for this geometry; however, at that time,
the application of the method was severely restricted by
the limited computational facilities [6], [7]. Recently the
matrix method has been used with modern computers to
produce highly accurate values of the capacitances per-
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Fig. 1. Geometry of shielded-pair transmission line.

unit length of this structure [8], [12]-[16]. In this paper,
expressions for the other parameters that characterize the
structure are also determined, i.e., resistance and attenua-
tion per-unit length and the characteristic impedance.
Accurate parametric representations of these characteris-
tics are presented in graphical form. These graphs are
useful in the design and the optimization of shielded-pair
transmission lines. Capacitances measured on models of
these transmission lines are compared with the theory.
The geometry of the shielded-pair line is shown in Fig.
1. The radius of the shield is ¢, the half-spacing between
the two conductors is b, and the dielectric in the line has
the relative permittivity €, =¢/¢, The two inner conduc-
tors of the line may have different radii ¢, and a,, but
their axes and the axis of the shield are assumed to be
coplanar and, of course, parallel. The propagation of
transverse electromagnetic (TEM) waves on the shielded-
pair line constructed from perfect conductors is com-
pletely characterized by the solution of the electrostatic
problem on a cross section. In the electrostatic analysis,
the surface charge density n on the ith conductor is
written as a truncated Fourier series with the form

@)= > Smcos(ng),  i=1,2,3 (1)
n=0

where m is the number of terms retained in the series.
Note that the series also would include terms of the form
sin(n¢) if the axes of the three conductors were not
coplanar. The total charge per-unit length on the ith
conductor is A,=27q,{,;,, where g, is the radius of the
conductor, for the shield a;=c. The linear relations be-
tween the charge coefficients {,,, and the electrostatic
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potentials @, on the inner conductors of the line are, in
matrix form
- 1

€11 Cip o, Ay

1 Cx 2, A
0 As
0| | 27a8,
0 27a,$,,
0 |=]| 2uciy, )

r I R R

0| |27,
0 27a,85,,
0 27cla,,

L 4 L i L |

where the potential on the shield is set equal to zero. Once
the coefficients in the matrix I' are obtained, by the
method described in [12], all of the charge coefficients §,,
can be determined for any excitation, i.e., any specified
set of potentials ®; and ®,. When only the relations
between the total charges per-unit length A; and the poten-
tials @, are of interest, only the four coefficients ¢y;, ¢,
¢,1» and ¢, in the upper left-hand corner of the I' matrix
are needed. The coefficient c¢;,(c,;) is the ratio
A/ ®,(\,/®,) when conductor 2 (1) is at the same poten-
tial as the shield. Note that ¢,;,=c,, when a,=a,. The
coefficient c;,(c,) is the ratio A, /®@,(A,/®,;) when conduc-
tor 1 (2) is at the same potential as the shield. The equality
¢1,=¢,, - always holds. The terms c¢;; and c,, are often
referred to as coefficients of capacitance per-unit length,
and c,, and c,; as coefficients of induction per-unit length
[21]). All of the other capacitances per-unit length that are
used to characterize the structure can be computed from
41> €3y and c,,. For example,

1) the capacitance (to ground) of one of the conductors
when both conductors are at the same potential with
respect to the shield (even mode of excitation)

3
4)
2) the (mutual) capacitance between the conductors

when they are at potentials that are equal in ampli-

tude, but opposite in phase with respect to the shield
(odd mode of excitation)

Cge1=Cppt 2

cge2 =Cp + Ci2

2
C11€n—C1
cppteptep,

)

Cp =

II. PARAMETERS FOR SYMMETRICAL SHIELDED-PAIR
LINE

A case of practical interest is when the conductors 1
and 2 have the same radius (a,=a,) and are symmetri-
cally located within the shield. Two modes or methods of
excitation are then defined, the balanced (odd) excitation
where the conductors, 1 and 2, are at potentials that are
equal in amplitude, but opposite in phase with respect to
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the shield, and the longitudinal (even) excitation where the
conductors, 1 and 2, are at the same potential with respect
to the shield. The conventional transmission-lineparame-
ters are easily determined for either method of excitation
once the coefficients for the charge density, §,, in (1), are
known. It is convenient to define the following dimension-
less transmission line parameters,

Normalized Capacitance Per-Unit Length

c=C/e (6)
where € is the permittivity of the material filling the
transmission line. The capacitance per-unit length ¢ is ¢,

for the balanced case and 2¢,, for the longitudinal case.

Normalized Characteristic Impedance
Z=2z/¢=1/¢ (7)

where { ="V p,/€ is the wave impedance of the medium
surrounding the conductors.

Normalized Resistance Per-Unit Length

At high frequencies the current in the conductors is
contained in a thin layer near the surface (skin effect) and
can be approximated by an axial surface current density

Ru(@)=: 3 tycos(ne). @®

The coefficient £, in the series (8) can be obtained from
those for the charge density ¢, using the equation of
continuity, viz.,

Co

"=V

g’in (9)
A
where ¢, is the speed of light in a vacuum. An approxi-
mate expression for the time-average power p; dissipated
per-unit length of conductor is obtained from the surface
current and the surface resistance R,

n=Roa(lef+3 S 16F) (0
where "
ay=a,=a a,=c. (11)
At high frequencies the surface resistance is
R~V opy/20 (12)

where ¢ is the conductivity of the metal. The high-
frequency resistance per-unit length of the transmission
line is

3
r=22 p/1s (13)
i=1

where I, is the average current in one of the inner conduc-
tors for the balanced case (Jo=2waf,;), and twice the
average current in one of the inner conductors for the
longitudinal case (I,=4waf,,). After combining (9), (10),
and (13), the normalized resistance per-unit length of the
transmission line obtains

_ 2mcr 22
"R ‘(“) 2

m a i=1

{25 &P} a9

n=1
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Fig. 2. Normalized capacitance per-unit length for balanced and longi-
tudinal excitations versus separation of conductors with radius of
conductor as parameter.

where
Cin= { g,f/mz/gf;ok?j;:zial (15)
Normalized Attenuation Per-Unit Length
a= 2’1’(““"‘ =%FE. (16)

m

In Figs. 2-5, the four dimensionless parameters ¢, zZ,7,

and & for the balanced and longitudinal modes are shown.

as a function of the normalized separation between the
conductors b/c, with the normalized radius of the con-
ductors a/ b, as a parameter. Note that the normalizations
used make the results presented in Figs. 2-7 independent
of the relative permittivity e, of the material between the
conductors and the conductivity o of the conductors. The
numerical values were obtained by first computing the
coefficients of the surface charge density §, using the
procedure presented in [12]; the parameters of interest are
readily computed from these coefficients. In all computa-
tions, the number of terms m retained in the series for the
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surface charge densities (1) was taken large enough that
an increase in m produced a relative change of 10~3 or
less in the capacitances per-unit length. For example, for a
separation b/c=0.5 the number of terms required with
the conductor size a/b=0.1 was only m=6, but with
a/b=0.9 the number of terms increased to m=12. For
the majority of the conductor spacings considered, the
relative change was much less than 1073, typically 1076,
Note that the range of allowable values for a/b at a fixed
separation b/ c is

1, 0<b/c<05 (17)
(¢/b)—1, 05<b/c<1

As expected, the capacitances for both cases shown in Fig.
2 are most sensitive to small changes in the spacing
(a/b,b/c) when the conductors are nearly in contact, i.e.,
a/b near 1.0 when b/c¢<0.5 and a/b near (c¢/b)—1
when b/c¢>0.5.

In Fig. 2, approximate values of the normalized capaci-
tance per-unit length are shown as dashed lines; these
were computed from the so-called “Philips’ equations,”
(apparently given this name by C. M. Miller {8] because
they originated at N. V. Philips’ Gloeilampenfabrieken
[19]). In normalized form these equations are, for the
balanced excitation

0<a/b<{

Ep=cm/€z7r/cosh_lp (18)
where
o b LI/ 1 (a/b)] 19)
@ 1+(b/c)’[1-(a/b)’]
and, for the longitudinal excitation,
¢,=2¢,,/e~4m/cosh™q (20)
where
1—(b/c)*[1—(a/b)
g2 12/ (1 (e/o] o

4(b/cy
On examination of Fig. 2, the approximate capacitances ¢,
are seen to approach the results computed from the series
expansion when the spacing between the conductors is not
too close, a/b < 0.4, In the limit a/b—0 (for example, see
the curve a/b=0.1) the agreement is very good; this is to
be expected since the charged inner conductors effectively
become line charges in the limit, making an approxima-
tion based on the method of images very good. In the
graphs for the characteristic impedance and resistance
and attenuation per-unit length for the balanced excita-
tion, Figs. 3, 4, and 5, results obtained from approximate
formulas attributed by Green et al. to Mead and
Schelkunoff are also shown [18]. In the normalized forms
the approximate formulas are
2
-2
c

z‘=l[1n(31’- 1—b2/c2)_ 1+4b2/a2(
(22)

¢ a 1+b2/c? 165*/a*
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Fig. 3. Normalized characteristic impedance for balanced and longitu-
dinal excitations versus separation of conductors with radius of con-
ductor as parameter.

272 2
L 1+20%/a (l_i)

4b*/a* c?

=2(2)
b 1+4b%/a?

+8b%/c 1+
/ ( c? 8b*/a*

) (23)
with &@=7/2Z,. These formulas are seen to be in good
agreement with the numerical results computed from the
series expansion when the dimensions of the conductors
are not near the critical values, viz, those indicated by the
inequalities (17). The proximity effect between the con-
ductors, which is included completely in the series for-
mulation, but not in the approximate formulas, is the
cause of these differences. The useful range for the ap-
proximate formulas, of course, depends upon the amount
of error that can be tolerated in a computation; but,
loosely speaking, the formulas are accurate, i.e., less than
3-percent error in Z,, 7, and @, for a/b<50.6 and b/c<
[0.82-1.2(a/b)].
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Fig. 4. Logarithm of resistance per-unit length for balanced and longi-
tudinal excitations versus separation of conductors with radius of
conductor as parameter.

The proximity effect is clearly visible in the curves for
the resistance per-unit length of the line, Fig. 4. For
moderate separations and conductor sizes, the resistance
is seen to decrease as the radius ¢ of the conductor is
increased (fix /¢, increase a/b). This is a result of the
increase in the circumference and, therefore, reduction in
the resistance of the inner conductors. At larger separa-
tions and conductor sizes, increasing the radius of the
conductors a can increase the resistance per-unit length,
because the increase due to the proximity effect over-
shadows the decrease that results from the larger circum-
ference of the conductors. The regions where this effect
occurs are easily identified on the graphs as areas in
which a change in the order or a crossing of the curves for
constant a/b occur. For example, in Fig. 4, the ordering
of the curves (a/b constant) for the balanced mode
changes for values of a/b greater than 0.7. Similar be-
havior is observed for the curves for the attenuation
per-unit length, Fig. 5.
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Fig. 5. Logarithm of attenuation per-unit length for balanced and
longitudinal excitations versus separation of conductors with radius of
conductor as parameter.

For the purpose of designing a transmission line, it is
convenient to know the cross-sectional dimensions of the
line that give the minimum attenuation for a specified
characteristic impedance. In Figs. 6 and 7, parametric
curves for the normalized impedance Z, and the normal-
ized attenuation a are plotted on the same graph as a
function of the normalized conductor dimensions a/b
and b/c for the balanced and longitudinal cases. From
these graphs it is easy to determine the values of a/b and
b/c that will produce a minimum value of a for a fixed
Z,. These figures also show that there are definite values
of a/b and b/c that give an absolute minimum of
attenuation for each method of excitation. For the bal-
anced excitation the minimum of the normalized attenua-
tion is &y;,~16.83 when a/b~0.420, b/c~0.436, and for
the longitudinal excitation, &p;,~11.75 when a/b~1.0,
b/c~0.175. These spacings correspond to the normalized
characteristic impedance Z,~0.373 for the balanced
mode and Z,~0.214 for the longitudinal mode. Note that
the absolute minimum of & for the longitudinal excitation
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Fig. 6. Contours of constant characteristic impedance and attenuation
per-unit length (balanced excitation).
5
a/b =
09
Fig. 7. Contours of constant characteristic impedance and attenuation

per-unit length (longitudinal excitation).

occurs when the inner conductors of the line are touching,
a/b=1.0. For the longitudinal case, the surface charge
(current) on the inner conductors at the point ¢=180° is
zero when a/b=1.0, see Fig. 8; thus, the conductors
coming into contact produces no drastic effects. For the
balanced excitation, however, the surface charge (current)
at the point ¢=180° is very large for close spacings of the
inner conductors and becomes infinite as they contact;
this is illustrated for a spacing of a/b=0.95 in Fig. 8. The
different behaviors of the charge (current) near the point
¢=180° for the longitudinal and balanced modes make
the capacitance and resistance per-unit length for the two
modes quite different for closely spaced inner conductors
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Fig. 9. Cross section of model transmission line.

(a/b near 1.0,b/c<0.5). As seen in Figs. 2 and 4, the
normalized capacitance & and the normalized resistance 7
per-unit length for the longitudinal mode obtain finite
values in the limit a/b—1.0, whereas, both ¢ and 7 for the
balanced mode become infinite in the limit.

1.

The capacitances ¢y, ¢, and c,, were measured on a
model transmission line as a function of the parameters
a,/b, a,/b, and b/c. A diagram of the experimental line
is shown in Fig. 9. The perturbation introduced by the
supports for the inner conductors of the line, and the
fringing field that exists at the ends of the line make the
electromagnetic behavior of the experimental model of
length / quite different from an equal length of line in the
theory, which assumes a structure that is homogeneous in
the axial direction. To obtain capacitances for comparison
with the theory, measurements were made on two lengths
of line /; and /,. Both lengths satisfied the inequality />c.
The lines had identical support and end structures. The
section of the longer line (length /,—/) which is not
present in the shorter line has a field which is approxi-
mately uniform in the axial dimension and can be com-
pared with the theory. The capacitances per-unit length
for comparison with the theory were computed from the
measurements made on the two lines; for example, for the
capacitance ¢,

COMPARISON WITH EXPERIMENT

_ Cu(lz) - Cll(ll)

" (lz— ll) (24)
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Fig. 10. Comparison of theoretical and measured values of capacitance
per-unit length. (2) Line with conductors of equal radii (¢/c=0.167).
(b) Line with conductors of unequal radii (a,/c=0.167,5 /¢ =0.500).

where C;,(/) is the measured capacitance for the line of
length /. This procedure for computing the capacitance
essentially subtracts out the effects of the supports and the
fringing at the ends.

The theoretical and measured values of the two capaci-
tances 2c,, and c,; for a symmetrical shielded pair (a,=
a,) are compared in Fig. 10(a). The capacitances are
shown as a function of the ratio /¢ (a/c~0.167). The
theoretical and experimental results are seen to be in good
agreement. In Fig. 10(b), theoretical and measured values
of the three capacitances c,,+c¢,,, ¢, and c,, for an
asymmetrical shielded pair (a,#4,) are shown as a func-
tion of the asymmetry a,/a, (a,/c¢~0.167,b/c~0.500).
The theoretical and experimental results are again in good
agreement. The error bars used with the experimental data
in Fig. 10 include an estimate of the error associated with
the instrumentation, as well as an estimate of the error
that is a result of the imprecision in the size and spacing
of the conductors. The latter is most critical when the
conductors are at a close spacing and is the reason the size
of the error bars is different for the various spacings of the
conductors.
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1V. ConNcuLsioN

The electrical parameters of the shielded-pair transmis-
sion line have been computed using the truncated
harmonic expansion for the surface charge density on the
conductors (1). Both the balanced and longitudinal modes
of excitation were considered. For the balanced mode, the
approximate formulas of S. P. Mead and S. A.
Schelkunoff were shown to be accurate when proximity
effects are not large, i.e., less than 3-percent error for
moderate conductor sizes and spacings, a/b:50.6 and
b/c<[0.82-12(a/b)]. A minimum in the attenuation
per-unit length of the line was found for each mode. The
minimum attenuation occurs when a/b=a:0.420,b/c~
0.436 for the balanced mode (a=16.83,Z,~0.373), and
when a/b~1.0,b/¢=0.175 for the longitudinal mode (a
~11.75,Z_~0.214). Measured values of the capacitance
per-unit length for transmission lines with inner conduc-
tors of equal and unequal radii were shown to be in good
agreement with the theory.
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