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On the Design and Optimization of the
Shielded-Pair Transmission Line
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Absrmcr-The electrical parameters of the shielded-psir tmnsmfsion

fine are computed usfog a truncated harmonic expansion for the surface

charge demity on the conductors. The formulation inefudes the proximity

effect due to the close spacing of the conductors. Parmnet& enrves are

given for the eayeitanee, resistance and attenudon per-unit lengt@ and

‘~c~of* ftne. Boththe bafaneed and the
kmgitudhmf modes of pqsgatlon are considered rmd the dfmensiom for a

Ifne with ndrdnmm attenuation ttre determined for eaeh mode. Capael-

tancesmeamred onmodel transmission ffnesare shmvntobeingood

agreement wfth the theory.

I. INTRODUCTION

s EVERAL DIFFERENT methods for computing the

electrical characteristics of multiconductor transmis-

sion systems have been presented in the literature. These

structures have been analyzed using physical approxima-

tions, such as the replacement of the conductors by image

line charges [1]–[3], conformal mapping [4], variational

principles [5], and matrix methods that involve truncating

an infinite series of harmonic terms that represent the

surface charge or current on the conductors (often re-

ferred to generically as the method of moments) [6]-[7].

When used with a modern computer, the last approach

offers the advantage that any reasonable degree of ac-

curacy for the parameters, such as the capacitances per-

unit length, can be obtained by retaining a sufficient

number of terms in the series. The papers that cover this

material generally have presented numerical results for a

few specific cases, but no systematic parametric studies

that can be used for design purposes.

The parameters that characterize the shielded-pair

transmission line are of particular interest since this struc-

ture is often used in practice, e.g., as a shielded balanced

transmission line in telephonic communication, and in

directional couplers, transformers and filters at radio

frequencies (UHF). .Several approximate formulas were

developed for the capacitances per-unit length of this line

during the early period of its use [18]-[20]. Craggs and

Tranter appear to be the first to have developed the

matrix method for this geometry; however, at that time,

the application of the method was severely restricted by

the limited computational facilities [6], [7]. Recently the

matrix method has been used with modern computers to

produce highly accurate values of the capacitances per-
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Fig, L Geometry of shielded-pair transmission line.

unit length of this structure [8], [ 12]–[ 16]. In this paper,

expressions for the other parameters that characterize the

structure are also determined, i.e., resistance and attenua-

tion per-unit length and the characteristic impedance.

Accurate parametric representations of these characteris-

tics are presented in graphical form. These graphs are

useful in the design and the optimization of shielded-pair

transmission lines. Capacitances measured on models of

these transmission lines are compared with the theory.

The geometry of the shielded-pair line is shown in Fig.

1. The radius of the shield is c, the half-spacing between

the two conductors is b, and the dielectric in the line has

the relative permittivity q = c/~& The two inner conduc-
tors of the line may have different radii al and az, but

their axes and the axis of the shield are assumed to be

coplanar and, of course, parallel. The propagation of

transverse electromagnetic (TEM) waves on the shielded-

pair line constructed from perfect conductors is com-

pletely characterized by the solution of the electrostatic

problem on a cross section. In the electrostatic analysis,

the surface charge density q on the ith conductor is

written as a truncated Fourier series with the form

m

~j(o) = 2 l’jn Cos(n+), i=l,2,3 (1)
~=o

where m is the number of terms retained in the series,

Note that the series also would include terms of the form

sin(m)) if the axes of the three conductors were not

coplanar. The total charge per-unit length on the ith

conductor is ~.= 2~ai{i0, where ai is the radius of the

conductor, for the shield a3= c. The linear relations be-

tween the charge coefficients (i., and the electrostatic
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potentials @i on the inner conductors of the line are, in

matrix form

c11 C*2 o

% 1 C22 “

(D1

@2

o
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0
0
0

----
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0
0
0

---------

_- ..: ----
z~alllm
2~a212m
2mc{3m

(2)

where the ootential on the shield is set equal to zero. Once

the coeffi~ients in the matrix 17 are obtained, by the

method described in [12], all of the charge coefficients ~jc

can be determined for any excitation, i.e., any specified

set of potentials 01 and @2. When only the relations

between the total charges per-unit length \. and the poten-

tials @i are of interest, only the four coefficients C]1, cIZ,

c21, and C22in the upper left-hand comer of the r matfi

are needed. The coefficient Cl 1(c22) is the ratio

A1/@l(A2/@~ when conductor 2 (1) is at the same poten-

tial as the shield. Note that c11= CZ2 when al= az. The

coefficient C12(C21)is the ratio X1/@2(A2/@l) when conduc-

tor 1 (2) is at the same potential as the shield. The equality

C12= C21.always holds. The terms Cl 1 and CZ2 are often

referred to as coefficients of capacitance per-unit length,

and C12and C21as coefficients of induction per-unit length

[21]. All of the other capacitances per-unit length that are

used to characterize the structure can be computed from
Cl ~, C22 and Clz For example,

1)

2)

the capacitance (to ground) of one of the conductors

when both conductors are at the same potential with

respect to the shield (even mode of excitation)

Cgel= c~~+ C12 (3)

cge2= C22+ C12 (4)

the (mutual) capacitance between the conductors

when they are at potentials that are equal in ampli-

tude, but opposite in phase with respect to the shield

(odd mode of excitation)

C11C22—C;2
cm= (5)

C,l + c22+2c~2

II. PARAMETERS FOR SYMMETRICAL SHIELDED-PAIR

LINE

A case of practical interest is when the conductors 1

and 2 have the same radius (al= a2) and are symmetri-

cally located within the shield. Two modes or methods of

excitation are then defined, the balanced (odd) excitation

where the conductors, 1 and 2, are at potentials that are

equal in amplitude, but opposite in phase with respect to

the shield, and the longitudinal (even) excitation where the

conductors, 1 and 2, are at the same potential with respect

to the shield. The conventional transmission-lineparame-

ters are easily determined for either method of excitation

once the coefficients for the charge density, fi. in (1), are

known, It is convenient to define the following dimension-

less transmission line parameters.

Normalized Capacitance Per-Unit Length

E= E/c (6)

where c is the permittivity of the material filling the

transmission line. The capacitance per-unit length Z is cm

for the balanced case and 2cge for the longitudinal case.

Normalized Characteristic Impedance

2c=zc/[=1/E (7)

where J = ~ is the wave impedance of the medium

surrounding the conductors.

Normalized Resistance Per-Unit Length

At high frequencies the current in the conductors is

contained in a thin layer near the surface (skin effect) and

can be approximated by an axial surface current density

The coefficient $i. in the series (8) can be obtained from

those for the charge density ~i. using the equation of

continuity, viz.,

(9)

where co is the speed of light in a vacuum. An approxi-

mate expression for the time-average power pi dissipated

per-unit length of conductor is obtained from the surface

current and the surface resistance Rm

(lo)

where

a1=a2=a as= c. (11)

At high frequencies the surface resistance is

RmmV= (12)

where u is the conductivity of the metal. The high-
frequency resistance per-unit length of the transmission

line is

(13)

where 10 is the average current in one of the inner conduc-

tors for the balanced case (10 = 2naflo), and twice the

average current in one of the inner conductors for the
longitudinal case (10 = 4raE10). After combining (9), (10),

and (13), the normalized resistance per-unit length of the

transmission line obtains

._ 2~cr
r— –=(:)5{:[ ~_, ]} (1’0R.

1;012++ : IQ2
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Fig. 2. Normalized capacitance per-unit length for balanced and longi-

tudinal excitations versus separation of conductors with radius of

conductor as parameter.

where

c.={
{,./{10balanced

{,J2{10 longitudinal
(15)

Nornw.dized Attenuation Per-Unit Length

27rc{(x 1--
z=—=

R~ ~ ‘c”
(16)

In Figs. 2–5, the four dimensionless parameters ? ~C, 7,

and ii for the balanced and longitudinal modes are shown.

as a function of the normalized separation between the

conductors b/c, with the normalized radius of the con-

ductors a/b, as a parameter. Note that the normalizations

used make the results presented in Figs. 2–7 independent

of the relative permittivity q of the material between the

conductors and the conductivity u of the conductors. The

numerical values were obtained by first computing the

coefficients of the surface charge density ~i. using the

procedure presented in [12]; the parameters of interest are
readily computed from these coefficients. In all computa-

tions, the number of terms m retained in the series for the

surface charge densities (1) was taken large enough that

an increase in m produced a relative change of 10– 3 or

less in the capacitances per-unit length. For example, for a

separation b/c =0.5 the number of terms required with

the conductor size a/b = 0.1 was only m= 6, but with

a/b =0.9 the number of terms increased to m = 12. For

the majority of the conductor spacings considered, the

relative change was much less than 10– 3, typically 10–6.

Note that the range of allowable values for u/b at a fixed

separation b/c is

{

O<b/c<O.5
‘<a/b< ;;/b)-l, 0.5 ~b/cc 1

. (17)

As expected, the capacitances for both cases shown in Fig.

2 are most sensitive to small changes in the spacing

(a/b, b/c) when the conductors are nearly in contact, i.e.,

a/b near 1.0 when b/c <0.5 and a/b near (c/b) – 1

when b/c >0.5.
In Fig. 2, approximate values of the normalized capaci-

tance per-unit length are shown as dashed lines; these

were computed from the so-called “Philips’ equations,”

(apparently given this name by C. M. Miller [8] because

they originated at N. V. Philips’ Gloeilampenfabrieken

[19]). In normalized form these equations are, for the

balanced excitation

~=cm/wr/cosh-lp (18)

where

_ b l-( b/c)2[l-(a/b)2]

p –; 1+(b/c)2[ 1–(a/b)*]
(19)

and, for the longitudinal excitation,

Fp= 2cge/ew4~/cosh– ‘q (20)

where

b l-( b/c)4[l-(a/b)2]
q=; (21)

4(b/c)2 “

On examination of Fig. 2, the approximate capacitances EP

are seen to approach the results computed from the series

expansion when the spacing between the conductors is not

too close, a/b <0.4. In the limit a/b-+0 (for example, see

the curve a/b = O.1) the agreement is very good; this is to

be expected since the charged inner conductors effectively

become line charges in the limit, making an approxima-

tion based on the method of images very good. In the

graphs for the characteristic impedance and resistance

and attenuation per-unit length for the balanced excita-

tion, Figs. 3, 4, and 5, results obtained from approximate

formulas attributed by Green et al. to Mead and

Schelkunoff are also shown [18]. In the normalized forms

the approximate formulas are

(22)
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Fig. 3. Normalized characteristic impedance for balanced and longitu-
dinal excitations versus separation of conductors with radius of con-

ductor as parameter.
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Fig. 4. Logarithm of resistance per-unit length for balanced and longi-
tudinal excitations versus separation of conductors with radius of
conductor as parameter.
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+8b2/c2 1+ — –

c’ 8b4/a4 )]
(23)

with &= ?/2~c. These formulas are seen to be in good

agreement with the numerical results computed from the

series expansion when the dimensions of the conductors

are not near the critical values, viz, those indicated by the

inequalities (17). The proximity effect between the con-

ductors, which is included completely in the series for-

mulation, but not in the approximate formulas, is the

cause of these differences. The useful range for the ap-

proximate formulas, of course, depends upon the amount

of error that can be tolerated in a computation; but,

loosely speaking, th~ formulas are accurate, i.e., less than

3-percent error in ZC, 7, and ii, for a/bSO.6 and b/c5

[0.82- l.2(a/b)].

The proximity effect is clearly visible in the curves for

the resistance per-unit length of the line, Fig. 4. For

moderate separations and conductor sizes, the resistance

is seen to decrease as the radius a of the conductor is

increased (fix b/c, increase a/b). This is a result of the

increase in the circumference and, therefore, reduction in

the resistance of the inner conductors. At larger separa-

tions and conductor sizes, increasing the radius of the

conductors a can increase the resistance per-unit length,

because the increase due to the proximity effect over-

shadows the decrease that results from the larger circum-

ference of the conductors. The regions where this effect

occurs are easily identified on the graphs as areas in

which a change in the order or a crossing of the curves for

constant a/b occur. For example, in Fig. 4, the ordering

of the curves (a/b constant) for the balanced mode

changes for values of a/b greater than 0.7. Similar be-

havior is observed for the curves for the attenuation

per-unit length, Fig. 5.
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Fig. 5, Logarithm of attenuation per-unit length for balanced and
longitudinal excitations versus separation of conductors with radius of

conductor as parameter.

For the purpose of designing a transmission line, it is

convenient to know the cross-sectional dimensions of the

line that give the minimum attenuation for a specified

characteristic impedance. In Figs. 6 and 7, parametric

curves for the normalized impedance ~c and the normal-

ized attenuation Z are plotted on the same graph as a

function of the normalized conductor dimensions a/b
and b/c for the balanced and longitudinal cases. From

these graphs it is easy to determine the values of a/b and

bf c that will produce a minimum value of ii for a fixed

2=. These figures also show that there are definite values

of a/b and b/c that give an absolute minimum of

attenuation for each method of excitation. For the bal-

anced excitation the minimum of the normalized attenua-
tion is ii~i.- 16.83 when a/b= O.420, b/c= O.436, and for

the longitudinal excitation, EM= 11.75 when a/b= 1.0,
b/csO.175. These spacings correspond to the normalized

characteristic impedance ~CmO.373 for the balanced

mode and ~C-0.214 for the longitudinal mode. Note that

the absolute minimum of ii for the longitudinal excitation

alb

0.1 02 0:3 0.4 0.5 0.6 0,7 0,s 0.9

blc

Fig. 6. Contours of constant characteristic impedance and attenuation

per-unit length (balanced excitation).

alb

oil

blc

Fig. 7. Contours of constant characteristic impedance and attenuation
per-unit length (longitudinal excitation).

occurs when the inner conductors of the line are touching,

a/b = 1.0. For the longitudinal case, the surface charge

(current) on the inner conductors at the point o = 180° is

zero when a/b = 1,0, see Fig. 8; thus, the conductors

coming into contact produces no drastic effects. For the

balanced excitation, however, the surface charge (current)

at the point @= 180° is very large for close spacings of the
inner conductors and becomes infinite as they contact;

this is illustrated for a spacing of a/b= 0.95 in Fig. 8. The

different behaviors of the charge (current) near the point

@= 180° for the longitudinal and balanced modes make

the capacitance and resistance per-unit length for the two

modes quite different for closely spaced inner conductors
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Fig. 9. Cross section of model transmission tine.

(a/b near 1.0, b/c <0.5). As seen in Figs. 2 and 4, the

normalized capacitance Z and the normalized resistance 7

per-unit length for the longitudinal mode obtain finite

values in the limit a/b-+1.0, whereas, both F and 7 for the

balanced mode become infinite in the limit.

III. COMPARISON WITH EXPERIMENT

The capacitances c1,, Czz, and Cg, were measured on a

model transmission line as a function of the parameters

al/ b, al/b, and b/c. A “diagram of the experimental line

is shown in Fig. 9. The perturbation introduced by the

supports for the inner conductors of the line, and the

fringing field that exists at the ends of the line make the

electromagnetic behavior of the experimental model of

length 1 quite different from an equal length of line in the

theory, which assumes a structure that is homogeneous in

the axial direction. To obtain capacitances for comparison
with the theory, measurements were made on two lengths

of line 11and lz. Both lengths satisfied the inequality l>> c.

The lines had identical support and end structures. The

section of the longer line (length 12– 11) which is not

present in the shorter line has a field which is approxi-

mately uniform in the axial dimension and can be com-

pared with the theory. The capacitances per-unit length

for comparison with the theory were computed from the

measurements made on the two lines; for example, for the

capacitance c1~

(24)

t

‘L——m—r+
1 15 2

~

%

0)

Fig. 10. Comparison of thwretical and measured values of capacitance
per-unit length. (a) Line with conductors of equal radii (a/c= 0.167).

(b) Line with conductors of unequal radii (al/c =0.167,fr/c =0.500).

where Cl ~(1) is the measured capacitance for the line of

length 1. This procedure for computing the capacitance

essentially subtracts out the effects of the supports and the

fringing at the ends.

The theoretical and measured values of the two capaci-

tances 2cg, and c1~ for a symmetrical shielded pair (al=

az) are compared in Fig. 10(a). The capacitances are

shown as a function of the ratio b/c (a/c~O. 167). The

theoretical and experimental results are seen to be in good
agreement. In Fig. 10(b), theoretical and measured values

of the three capacitances Cgel+ Cgez, c1~, and C22 for an

asymmetrical shielded pair (a ~#az) are shown- as a func-

tion of the asymmet~ a2/al (al/ c-0.167, b/c-0.500).

The theoretical and experimental results are again in good

agreement. The error bars used with the experimental data

in Fig. 10 include an estimate of the error associated with

the instrumentation, as well as an estimate of the error
that is a result of the imprecision in the size and spacing

of the conductors. The latter is most critical when the

conductors are at a close spacing and is the reason the size

of the error bars is different for the various spacings of the

conductors.
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IV. CONCUSSION

The electrical parameters of the shielded-pair transmis-

sion line have been computed using the truncated

harmonic expansion for the surface charge density on the

conductors (l). Both the balanced and longitudinal modes

of excitation were considered. For the balanced mode, the

approximate formulas of S. P. Mead and S. A.

Schelkunoff were shown to be accurate when proximity

effects are not large, i.e., less than 3-percent error for

moderate conductor sizes and spacings, a/b~O.6 and

b/c~[O.82– 1.2(a/b)]. A minimum in the attenuation

per-unit length of the line was found for each mode. The

minimum attenuation occurs when a/ @O.420, b/cx
0.436 for the balanced mode (ii= 16.83, ZC=0.373), and

when a/b- 1.0, b/c-O. 175 for the longitudinal mode (ii

s 11.75, &O.214). Measured values of the capacitance

per-unit length for transmission lines with inner conduc-

tors of equal and unequal radii were shown to be in good

agreement with the theory.
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